Detonations in Hydrocarbon Fuel Blends

نویسندگان

  • J. M. Austin
  • J. E. Shepherd
چکیده

A study of detonations in high-molecular weight hydrocarbon fuels of interest to pulse detonation engine applications was performed in a 280 mm diameter, 7.3 m long facility. Detonation pressure, wave speed, and cell width measurements were made in JP-10 mixtures and in mixtures representative of the decomposition products of JP-10. Experiments were performed in vapor-phase JP-10 mixtures at 353 K over a range of equivalence ratios (0.7≤ φ ≤1.3), nitrogen dilutions (fuel-oxygen to fuel-air), and initial pressures (20-130 kPa). The cell widths of the JP-10 mixtures are found to be similar to those of propane mixtures. A fuel blend representative of thermally decomposed JP-10 was studied at 295 K. This blend consisted of hydrogen, carbon monoxide, methane, acetylene, ethylene, and hexane with varying fractions of oxygen and nitrogen. The measured cell width of the fuel blend-air mixture is about half that of JP-10-air. The addition of components of the fuel blend (acetylene, ethylene, and methane) to JP-10 in air at 353 K was characterized. Nitrogen diluted mixtures of stoichiometric hexane-oxygen were studied and the cell widths for hexane-air and JP-10-air are found to be comparable. The addition of lower molecular weight fuels (hydrogen, acetylene, ethylene, 1 and carbon monoxide) to hexane-air was investigated. The measured cell width decreases, indicating increased sensitivity to detonation, with increasing fraction of hydrogen, acetylene, and ethylene, in order of effectiveness. The addition of a small fraction of carbon monoxide produces a small decrease in the cell width, but addition of more than about 75 % (by fuel mass) carbon monoxide results in a significant increase in cell width. Carbon monoxide is a principal intermediate product of hydrocarbon combustion yet there are relatively little cell width data available. Cell width measurements were made in carbon monoxide-air mixtures with the addition of hydrogen or hydrocarbons (acetylene, ethylene, and hexane). A linear relationship is found between the cell width and the reaction zone length when it is defined as the location of the peak in hydroxyl mole fraction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detonations in Hydrocarbon Fuel Blends

A study of detonations in high molecular weight hydrocarbon fuels was performed in two GALCIT facilities: the 280 mm gaseous detonation tube (GDT) and a 1180 liter vessel (HYJET) with jet initiation capability. In the GDT, detonation pressure, wave speed and cell width measurements were made in hexane-oxygen-nitrogen mixtures with and without the addition of lower molecular weight fuels. Stoich...

متن کامل

Evaluate the effect of biodiesel and EGR system on diesel engine emissions

Vehicle Emission is one of the main causes of environmental damage. Vehicle engines produce carbon dioxide (CO2), hydrocarbon (HC), Nitrogen oxides (NOx) and many other harmful substances. An investigation was conducted using a compression-ignition engine fuelled with different ratios of blends of diesel and biodiesel at different EGR rates. The effects of different ratios of fuel blends and EG...

متن کامل

Gas-phase detonation propagation in mixture composition gradients.

The propagation of detonations through several fuel-air mixtures with spatially varying fuel concentrations is examined numerically. The detonations propagate through two-dimensional channels, inside of which the gradient of mixture composition is oriented normal to the direction of propagation. The simulations are performed using a two-component, single-step reaction model calibrated so that o...

متن کامل

Comparative study of gas-to-liquid fuel, B5 diesel and their blends with respect to fuel properties, engine performance and exhaust emissions

Gas-to-liquid (GTL) fuel is regarded as a promising alternative diesel fuel. It can be used either directly as a diesel fuel or in blends with petroleum-derived diesel or biodiesel. This study investigated the fuel properties, engine performance and exhaust emissions of B5 diesel, GTL fuel and their blends. The main fuel properties of the blended fuels showed a linear variation with the fractio...

متن کامل

Environmental biotechnology Lectures L15.1 Biodegradation of biodiesel/diesel blends in soils: effects on hydrocarbon dissipation and natural microbial communities

It is generally considered that the addition of biodiesel has a positive effect on biodegradation of diesel fuel hydrocarbons. Although the stimulating effect has been widely recognized, the exact mechanisms behind this phenomenon are still not entirely elucidated. While the presence of biodiesel may induce dispersion of diesel fuel hydrocarbons, thereby increasing their overall bioavailability...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002